8th Grade Science Curriculum Map

Month	Objectives/Learning Goals	Applicable State and National Learning Standards	Assessments
August	Topic 1: Living Things in the Biosphere In this topic, students will explore living things, including how and why organisms are classified. Students will also learn about viruses, bacteria, protists, fungi, plants, and animals and how organisms from these various groups impact humans. Lesson 1: Living Things Students will investigate evidence that living things are made of cells and where they come from. Students will also study what living things need to stay alive, grow, and reproduce.		Worksheets and digital interactivities that allow students to learn about the lesson. Hands on labs, virtual labs that allow students to analyze different scenarios that are presented in the lessons. Each lesson will culminate in a quiz, and the topic will have a comprehensive assessment covering all of the lessons in the topic.
September	Topic 1: Living Things in the Biosphere continued : Lesson 2: Classification Systems Students will explore how living things are classified, and how the theory of evolution supports the classification of organisms. Lesson 3: Viruses, Bacteria, Protists, and Fungi Students will investigate the characteristics of viruses, bacteria, protists, and fungi, and how these organisms interact with nature and humans. Lesson 4: Plants and Animals Students will investigate the characteristics of plants and animals and how these organisms interact with nature and humans.		Worksheets and digital interactivities that allow students to learn about the lesson. Hands on labs, virtual labs that allow students to analyze different scenarios that are presented in the lessons. Each lesson will culminate in a quiz, and the topic will have a comprehensive assessment covering all of the lessons in the topic.
October	Topic 2 The Cell System The students will take an in depth look at the organization and development of living things, in particular their cells, are the main ideas that frame this topic. While studying cells, students use models to recognize cell structures and conduct investigations to understand cell structures and functions. Lesson 1: Structure and Function		Worksheets and digital interactivities that allow students to learn about the lesson. Hands on labs, virtual labs that allow students to analyze different scenarios that are presented in the lessons. Each lesson will culminate in a quiz, and the topic

	of Cell Students investigate Cell theory and explain how cells determine the structure of living things. Lesson 2: Cell Structures Using models, students compare and contrast cell structures and their functions. They also compare and contrast plant and animal cells.	will have a comprehensive assessment covering all of the lessons in the topic.
November	Topic 2 The Cell System Continued : Lesson 3: Obtaining and Removing Materials Students explore the primary role of the cell membrane and how it helps the cell to maintain homeostasis. Lesson 4: Cell Division (Mitosis) Students explore how cells undergo reproduction. Using models, they recognize how structures in the cell support this process.	Worksheets and digital interactivities that allow students to learn about the lesson. Hands on labs, virtual labs that allow students to analyze different scenarios that are presented in the lessons. Each lesson will culminate in a quiz, and the topic will have a comprehensive assessment covering all of the lessons in the topic.
December	Topic 2 The Cell System Continued : Lesson 5: Photosynthesis <i>Students investigate how</i> <i>plants and other organisms use photosynthesis</i> <i>to make food.</i> Lesson 6: Cellular Respiration Students explore how organisms use cellular respiration to break down food and produce energy and carbon dioxide.	Worksheets and digital interactivities that allow students to learn about the lesson. Hands on labs, virtual labs that allow students to analyze different scenarios that are presented in the lessons. Each lesson will culminate in a quiz, and the topic will have a comprehensive assessment covering all of the lessons in the topic.
January	. <i>Mandatory School wide Science Fair</i> <i>Projects</i> based on IJAS standards will be worked on during class time. Topic 3 : Human	. Worksheets and digital interactivities that allow students to learn about the lesson. Hands on labs, virtual labs that allow

	Body Systems How human body organs and their systems interact is the main idea that frames this topic. Students will demonstrate the interactions among several systems and learn how the nervous system sends and receives messages throughout the body. This topic supports student understanding of the importance of making healthy lifestyle decisions with regard to their physical and nutritional health. Lesson 1: Body Organization Students identify patterns as they observe how cells form interacting subsystems in the body. Through models, they identify and investigate the organs that are specialized for particular body functions.	students to analyze different scenarios that are presented in the lessons. Each lesson will culminate in a quiz, and the topic will have a comprehensive assessment covering all of the lessons in the topic.
February	Topic 3 Human Body Systems (Continued) Lesson 2: Systems Interacting Students identify and investigate how organ systems interact with each other to carry out all necessary functions for an organism's growth and survival. Through this investigation, they relate how the organ systems interact to maintain homeostasis. Lesson 3: Supplying Energy Students investigate and explain how the digestive system provides necessary energy to the body's cells in the form of nutrients. Students use this information to analyze the nutritional value of foods and develop healthy meals.	Worksheets and digital interactivities that allow students to learn about the lesson. Hands on labs, virtual labs that allow students to analyze different scenarios that are presented in the lessons. Each lesson will culminate in a quiz, and the topic will have a comprehensive assessment covering all of the lessons in the topic.
March	. Topic 3 Human Body Systems (Continued) Lesson 4: Manging Materials Students investigate and determine the relationship between the circulatory and respiratory systems, which provide the body with oxygen and remove carbon dioxide. Lesson 5: Controlling Processes Students identify the nervous system as the central system that controls all other	Worksheets and digital interactivities that allow students to learn about the lesson. Hands on labs, virtual labs that allow students to analyze different scenarios that are presented in the lessons. Each lesson will culminate in a quiz, and the topic

	systems and bodily functions. Students also use models to determine how the endocrine system works with the nervous system to regulate growth and development and maintain homeostasis.		will have a comprehensive assessment covering all of the lessons in the topic.
April/May	Topic 4: Genes and Heredity This topic deals with patterns of reproduction and inheritance. Students will identify how off spring receive traits from their parents. Lesson 1: Patterns of Inheritance Students investigate Gregor Mendel's advances in the fields of genetics and inheritance. Through Gregor Mendel's experiments, students discover how inherited alleles are related to an organism's traits and how probability is related to inheritance. Lesson 2: Chromosomes and Inheritance Students explore the relationship between genes, chromosomes, and inheritance. Students utilize models, such as a pedigree, to track inheritance. Lesson 3: Genetic Coding and Protein Synthesis Students delve into DNA replication to explore how cells make proteins and the process of protein synthesis. Lesson 4: Trait Variations Students learn how changes in DNA and RNA lead to trait variations in individuals and species.		Worksheets and digital interactivities that allow students to learn about the lesson. Hands on labs, virtual labs that allow students to analyze different scenarios that are presented in the lessons. Each lesson will culminate in a quiz, and the topic will have a comprehensive assessment covering all of the lessons in the topic.
		PS-MS-LS1-1 Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. PS-MS-LS1-2 Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to	

	the function DS MS S1 2 Los	
	argument supported by ovidence	
	for how the hedy is a system of	
	iot now the body is a system of	
	interacting subsystems composed	
	of groups of cells. PS-INS-LS1-8	
	Gather and synthesize	
	information that sensory receptors	
	respond to stimuli by sending	
	messages to the brain for	
	immediate behavior or storage as	
	memories. PS-MS-LS1-4 Use	
	argument based on empirical	
	evidence and scientific reasoning	
	to support an explanation for how	
	characteristic animal behaviors	
	and specialized plant structures	
	affect the probability of successful	
	reproduction of animals and	
	plants respectively. PS-MS-LS1-5	
	Construct a scientific explanation	
	based on evidence for how	
	environmental and genetic factors	
	influence the growth of	
	organisms. MS-LS1-A-1 All living	
	things are made up of cells, which	
	is the smallest unit that can be	
	said to be alive. An organism may	
	consist of one single cell	
	(unicellular) or many different	
	numbers and types of cells	
	(multicellular). (MS-LS1-1) MS-	
	LS1-A-2 Within cells, special	
	structures are responsible for	
	particular functions. and the cell	

	membrane forms the boundary that controls what enters and leaves the cell. (MS-LS1-2) MS- LS1-A-3 In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions. (MS- LS1-3) MS-LS1-B-2 Animals engage in characteristic behaviors that increase the odds of reproduction. (MS-LS1-4) MS- LS1-B-3 Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction. (MS-LS1-4) MS-	
	LS1-D-1 Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories. (MS-LS1- 8) MS- SEP-3.b Conduct an investigation to produce data to serve as the basis for evidence that meet the goals of the investigation. MGS- SEP-7.c Construct use, and	

	present an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. 6-8-CCC-6.a Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the relationships among its parts; therefore, complex natural and designed structures/systems can be analyzed to determine how they function. STSE-MS-1.a Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. PS-MS-LS1-6 Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. PS-MS-LS1-7 Develop a model to describe how	
	Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this	

	matter moves through an	
	organism PS-MS-FTS1-1 Define	
	the criteria and constraints of a	
	design problem with sufficient	
	precision to ensure a successful	
	solution taking into account	
	relevant scientific principles and	
	notential impacts on people and	
	the natural environment that may	
	limit possible solutions MS LS1	
	Mithin collo openial	
	A-2 Within cells, special	
	structures are responsible for	
	particular functions, and the cell	
	thet controls what enters and	
	that controls what enters and	
	leaves the cell. (MS-LST-2) MS-	
	LST-C-T Plants, algae (including	
	phytoplankton), and many	
	microorganisms use the energy	
	from light to make sugars (food)	
	from carbon dioxide from the	
	atmosphere and water through	
	the process of photosynthesis,	
	which also releases oxygen.	
	These sugars can be used	
	immediately or stored for growth	
	or later use. (MS-LS1-6) MS-LS1-	
	C-2 Within individual organisms,	
	food moves through a series of	
	chemical reactions in which it is	
	broken down and rearranged to	
	form new molecules, to support	
	growth, or to release energy. (MS-	
	LS1-7) MS-ETS1-A-1 The more	

	precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions. (MS- ETS1- 1) MS-SEP-2.f Develop a model to describe unobservable mechanisms. MS-SEP-2.g Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs. MS-SEP-3.b Conduct an investigation to produce data to serve as the basis for evidence that meet the goals of the investigation. MS-SEP-4.g Analyze and interpret data to determine similarities and differences in findings. MS-SEP- 6.c Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in	
	past and will continue to do so in the future. MGS-SEP-7.c	

	Construct use, and present an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. 6-8-CCC- 2.b Cause and effect relationships may be used to predict phenomena in natural systems. 6- 8-CCC-4.b Models can be used to represent systems and their interactions. 6-8-CCC-5.a Matter is conserved because atoms are conserved in physical and chemical processes. MGS-NoS- 2.a Science knowledge is based upon logical and conceptual connections between evidence and explanations. MGS-NoS-2.b Science disciplines share common rules of obtaining and evaluating empirical evidence. MGS-NoS-7.c Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism and openness to new ideas. STSE-MS-2.b The uses of technologies and any limitation on their use are driven by individual	
	technologies and any limitation on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in	

	such factors as climate natural	
	resources and economic	
	conditions	
	PS-MS-I S1-3 Lise argument	
	supported by ovidence for how	
	the body is a system of interacting	
	auboutome composed of groups	
	of collor DS MS L S1 & Cothor and	
	or cells. FS-IVIS-LST-o Gather and	
	sensory receptors respond to	
	stimuli by sending messages to	
	the brain for immediate behavior	
	or storage as memories. MS-LS1-	
	A-3 In multicellular organisms, the	
	body is a system of multiple	
	interacting subsystems. These	
	subsystems are groups of cells	
	that work together to form tissues	
	and organs that are specialized	
	for particular body functions. (MS-	
	LS1-3) MS-LS1-D-1 Each sense	
	receptor responds to different	
	inputs (electromagnetic,	
	mechanical, chemical),	
	transmitting them as signals that	
	travel along nerve cells to the	
	brain. The signals are then	
	processed in the brain, resulting	
	in immediate behaviors or	
	memories. (MS-LS1-8) 6-8-CCC-	
	4.a Systems may interact with	
	other systems; they may have	
	sub-systems and be a part of	
	larger complex systems.	

	PS-MS-LS1-5 Construct a	
	scientific explanation based on	
	evidence for how environmental	
	and genetic factors influence the	
	arowth of organisms PS-MS-LS3-	
	1 Develop and use a model to	
	describe why structural changes	
	to gonos (mutations) located on	
	obremeseres may effect proteins	
	chromosomes may allect proteins	
	and may result in narmful,	
	beneficial, or neutral effects to the	
	structure and function of the	
	organism. PS-MS-LS4-4	
	Construct an explanation based	
	on evidence that describes how	
	genetic variations of traits in a	
	population increase some	
	individuals' probability of surviving	
	and reproducing in a specific	
	environment. PS-MS-LS4-6 Use	
	mathematical representations to	
	support explanations of how	
	natural selection may lead to	
	increases and decreases of	
	specific traits in populations over	
	time. MS-LS1-A-2 Within cells,	
	special structures are responsible	
	for particular functions, and the	
	cell membrane forms the	
	boundary that controls what	
	enters and leaves the cell. (MS-	
	LS1-2) MS-LS1-B-1 Organisms	
	reproduce either sexually or	
	asexually and transfer their	

	genetic information to their offspring. (secondary to MS-LS3- 2) MS-LS3-A-1 Genes are located in the chromosome pair containing two variants of each of many distinct genes. Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual. Changes (mutations) to genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits. (MS-LS3-1) MS-LS3-A-2 Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited. (MS- LS3-2) MS-LS3-B-1 In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other. (MS-LS3-	
	versions may be identical or may differ from each other. (MS-LS3- 2) MS-LS3-B-2 In addition to variations that arise from sexual reproduction, genetic information	

	can be altered because of mutations. Though rare, mutations may result in changes to the structure and function of proteins. Some changes are beneficial, others harmful, and some neutral to the organism. (MS-LS3-1) MS-LS4-B-2 Natural selection leads to the predominance of certain traits in a population, and the suppression of others. (MS-LS4-4) MS-LS4-C- 1 Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes. (MS-LS4-6) MS-SEP- 6.c Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the	
	sources (including the students' own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in	

		the future. MGS-SEP-7.c Construct use, and present an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. 6-8-CCC- 6.a Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the relationships among its parts; therefore, complex natural and designed structures/systems can be analyzed to determine how they function.	
--	--	--	--